Самостоятельная работа


Скачать 367.47 Kb.
НазваниеСамостоятельная работа
страница4/5
Дата публикации28.03.2013
Размер367.47 Kb.
ТипСамостоятельная работа
referatdb.ru > Химия > Самостоятельная работа
1   2   3   4   5

Понятно, что при горении водорода выделяется огромное количество энергии, гораздо больше, чем при сгорании бензина. Какой вывод напрашивается из этого факта? Конечно, ученые делают ставку на водород как топливо будущего. Его легко перекачивать по трубам, как природный газ. Водород можно сжигать для производства тепла, при этом в качестве продукта горения образуется обыкновенная вода. Конструкторы совместно с химиками работают над созданием водородного двигателя внутреннего сгорания для автомобилей, разрабатывают специальные источники тока, позволяющие вырабатывать электричество за счет реакции водорода с кислородом. Водородная экономика – задача очень перспективная, но одновременно и достаточно сложная. Ее решение может вполне стать делом вашей жизни, если вы решите связать ее с замечательной наукой химией.

Водород очень широко используется в химической отрасли промышленности. Это сырье для получения аммиака, некоторых кислот, с его помощью восстанавливают из руд ценные металлы. И даже в пищевой отрасли промышленности водород нашел свое применение: он превращает жидкие растительные масла в твердые жиры – основу маргаринового производства.

Несмотря на множество «земных профессий», водород без преувеличения можно назвать космическим элементом.

Трудно поверить в то, что наше Солнце – это мир раскаленного водорода. При невероятно высоких температурах и давлении на Солнце протекают реакции, называемые ядерными. Протекание ядерных реакций сопровождается выделением гигантского количества энергии. Отсюда и фантастические температуры на Солнце, и яркое свечение, и поток невидимых глазом лучей, в том числе ультрафиолетовых, «виновников» золотистого летнего загара.

Самая большая планета солнечной системы – Юпитер – также почти полностью состоит из водорода (рис. 109). Как же такое может быть, ведь водород – это газ? Конечно, газ, но только в привычных для нас условиях. Юпитер – это мир страшного холода и гигантских давлений, поэтому водород на планете находится в твердом состоянии.

рис. 109. юпитер

Рис. 109. Юпитер


Вода. Вода – одно из самых распространенных веществ на поверхности нашей планеты, ведь почти 71% поверхности Земли занят морями и океанами. Недаром ее называют голубой планетой. Водная оболочка Земли – гидросфера. Водой в твердом состоянии – снегом и льдом – покрыто около 20% суши. В связанном виде вода находится и в земной коре – литосфере. Ученые считают, что в недрах Земли может находиться воды в десять раз больше, чем в гидросфере. Вода играет важную роль в геологической истории Земли, в ее тепловом режиме, климате, погоде, круговороте веществ.

Вода необходима каждому живому организму. Роль воды в живой клетке велика и многогранна. Она определяет не только объем и упругость клетки, это среда, в которой протекают многочисленные биохимические процессы. Вода сама участвует в сотнях химических реакций в живых клетках, например в знакомом вам процессе фотосинтеза.

Организм взрослого человека на 3/4 состоит из воды, причем ее содержание в различных органах неодинаково. Больше всего воды в глазном яблоке. Мозг человека содержит 80% воды, печень – 70%, мышцы – около 60%. И даже в костях есть вода – до 30%. Самая «безводная» часть нашего организма – эмаль зубов.

В сутки человек должен потреблять около 3 литров воды. Но это не значит, что нужно обязательно выпить 15 стаканов жидкости. Вода содержится во всех продуктах питания. В хлебе ее 40%, в мясе – 75%, в рыбе – 80%, а в овощах – более 90%. Представляете, обыкновенный огурец – это на 98% вода!

Вода необходима не только человеку и животным. Самые заправские «водохлебы» – растения. Подсолнуху для роста необходим литр воды в день, а взрослая береза высасывает из земли 60 л воды за сутки!

Почему же неприметное на первый взгляд вещество играет такую исключительную роль в природе?

Во многом это связано с необычными свойствами воды. Почти все они – исключение из общих правил. Это обстоятельство и делает воду самым удивительным веществом на планете.

В жидкой воде молекулы сцеплены между собой особыми связями, которые называют водородными. Для того чтобы «оторвать» одну молекулу воды от другой, требуется затратить довольно много энергии. Если бы водородных связей не было, вода закипала бы при температуре –80 °С, а замерзала при –100 °С. Будь вода «послушным» веществом, наша Земля превратилась бы в безжизненную пустыню: все реки, моря и океаны выкипели бы, на небе не было бы ни облачка, ни тучки.

Плотность воды тоже аномальна. Молекулы воды во льду «упакованы» так, что между ними остается довольно много «пустого места». Поэтому плотность льда меньше, чем плотность воды: лед плавает. Другого такого вещества нет! Благодаря этому аномальному свойству водоемы не промерзают до дна, и даже при самых сильных морозах температура воды подо льдом не опускается ниже +4 °С, именно при этой температуре плотность воды самая большая. В то же время вода, превращаясь в лед, приобретает огромную разрушительную силу: она способна разрушать крепчайшие горные породы, приводить в движение грозные лавины и вызывать оползни.

Если стальную иголку осторожно положить на поверхность воды, налитой в блюдце, то иголка не тонет, хотя плотность металла значительно больше плотности воды. Это явление можно объяснить большими силами поверхностного натяжения воды. Поэтому вода в свободном состоянии принимает шарообразную форму, например, капля дождя, мыльный пузырь и т.д. (рис. 110). Благодаря поверхностному натяжению по поверхности воды легко передвигаются некоторые насекомые, например клопы-водомерки (рис. 111).

рис. 110. капли росы стремятся принять форму шара

рис. 111. клоп-водомерка на поверхности воды

Рис. 110.Капли росы стремятся принять форму шара

Рис. 111. Клоп-водомерка на поверхности воды

Вода и водные растворы находят широкое применение в промышленности и сельском хозяйстве. На получение 1 т стали расходуется 150 т воды, 1 т бумаги – 250 т, 1 т синтетических волокон – 4000 т, 1 т пшеницы – 1500 т, 1 т хлопчатника – 10 000 т воды. Вода используется как сырье в химической отрасли промышленности для получения самых различных неорганических и органических веществ.

Казалось бы, воды на нашей планете много, но следует помнить, что ресурсы чистой пресной воды, пригодной для использования, ограничены. Поэтому каждый человек должен рационально использовать и беречь от загрязнения запасы пресной воды.
Азот. Азот открыл шотландский ученый Д.Резерфорд в 1772  г. Он проводил эксперименты по сжиганию под стеклянным колпаком . древесного угля, серы и фосфора. Продукты горения поглощались раствором щелочи. Резерфорд установил, что остающаяся после этого часть воздуха – это газ, в котором свеча не горит, а мышь гибнет (рис. 93). Это и был азот, основная составная часть атмосферы нашей планеты.

рис. 93. азот не поддерживает горение

Рис. 93. Азот не поддерживает горение

Название «азот» (т.е. безжизненный: от греч.а – отрицательная приставка и http://him.1september.ru/2006/13/zoe.jpg– жизнь) предложил французский химик А.Л.Лавуазье. Такое название, по мнению Лавуазье, должно было подчеркнуть свойства газообразного азота, который непригоден для дыхания и не поддерживает горение. Однако быстро выяснилось, что «безжизненный» азот – один из главных элементов жизни. Без участия соединений азота невозможно существование ни растений, ни животных. В живых организмах азот входит в состав таких важнейших органических веществ, как белки и нуклеиновые кислоты. В свою очередь белки – это те вещества, из которых построено все живое на Земле, а нуклеиновые кислоты – это соединения, которые определяют наследственные признаки.

Соотечественник Лавуазье, химик Ж.А.К.Шапталь в 1790 г. предложил переименовать азот в «нитроген» (образующий селитру). Это название используется во многих европейских странах, в частности в Англии и Франции. От этого слова произошли названия многих соединений азота. В России ни один элемент не имел в XVIII–XIX вв. столь многочисленных названий, как азот: нечистый гас, удушливый гас, огорюченный воздух, селитрород, гнилотвор, смертельный гас, нитроген и т.д. Однако именно название «азот» закрепилось в российской химической литературе.

Низкая химическая активность азота как простого вещества объясняется строением его молекулы. Она состоит из двух атомов и очень прочна. Азот вступает в химические реакции только тогда, когда разрушается его молекула. Однако даже при 3300 °С только одна молекула азота из тысячи распадается на атомы. Поэтому свободный азот так инертен в обычных условиях.

Химическая инертность азота доставляла и доставляет много хлопот химикам и технологам. Но нетрудно представить себе, как изменилась бы природа, не будь атмосферный азот столь инертен: Землю залили бы потоки азотной кислоты, в воздухе не осталось бы кислорода. Если бы кислород воздуха не был разбавлен инертным азотом, все живое было бы обречено на гибель: длительное вдыхание чистого кислорода при атмосферном давлении не менее губительно, чем его отсутствие.

В круговороте азота в природе решающую роль играют живые организмы. Особые бактерии, живущие на корнях бобовых растений (клевер (рис. 94), люпин (рис. 95), горох и др.), связывают атмосферный азот, превращая его в минеральные соли. Эти соли усваиваются растительными организмами. Современное сельское хозяйство невозможно без азотных удобрений.

рис. 94. клевер

рис. 95. люпин

Рис. 94. Клевер

Рис. 95. Люпин

Огромные количества азота в промышленности получают разделением воздуха. Более 75% чистого азота используют для синтеза аммиака, который служит исходным веществом в производстве удобрений, азотной кислоты, красителей, лекарственных препаратов, взрывчатых веществ. Газообразный азот применяется для создания инертной атмосферы при получении синтетических волокон, чистых металлов и сплавов. Жидкий азот нужен для создания низких температур.

Выдающиеся произведения живописи хранят в герметичных футлярах, заполненных азотом, чтобы предохранить краски от влаги и химически активных компонентов воздуха.
Алюминий. Впервые алюминий был получен в 1825 г. датским физиком Х.К.Эрстедом из природного глинозема с помощью электрического тока. Название металла происходит от латинского слова alumen, что означает квасцы. Квасцы – это очень важные соли серной кислоты, которые содержат в своем составе несколько металлов, в том числе алюминий.

Алюминий сразу после его открытия привлек химиков своей красотой и легкостью. Внешне походит на серебро, примерно в три раза легче железа и меди. Алюминий очень пластичен: его можно прокатать в тонкую фольгу, сделать тончайшие украшения, придать нужную форму. Вот только прочность чистого алюминия невелика, но в виде сплавов с другими металлами он заметно «крепчает». Уже созданы сплавы алюминия с прочностью в 10 раз выше, чем у стали.

Первоначально алюминий из-за несовершенного способа получения был необычайно дорог – почти в 10 раз дороже золота. Первые алюминиевые украшения и изделия были доступны только очень богатым людям. Император Наполеон III заменил серебряную посуду в своем дворце на более дорогую и редкостную – алюминиевую. Так, не ведая того, французский император заглянул в XX в., когда алюминиевая посуда стала обычной в любом доме. В знак признания выдающихся заслуг Д.И.Менделеева в Великобритании ему был преподнесен подарок – весы, одна чаша которых была сделана из золота, а другая – из алюминия.

На балах знатные дамы во времена Наполеона III нередко щеголяли ювелирными украшениями, изготовленными из алюминия.

Однако химикам уже в то время было известно, что алюминий – третий по распространению в земной коре элемент (после кислорода и кремния) и самый распространенный металл. Многочисленные минералы и горные породы в своем составе содержат алюминий. Это глины, полевые шпаты, многие полудрагоценные и драгоценные камни: гранаты, рубины, сапфиры, александриты (рис. 96). Корону Российской империи украшает драгоценная шпинель, в состав которой также входит алюминий. Вот только в природных соединениях алюминий прочно связан с другими элементами. Поэтому получение алюминия требует больших затрат электроэнергии. Большая часть этой энергии расходуется на расплавление глинозема – основного природного сырья для получения алюминия.

рис. 96. природный гранат (а) и обработанный александрит (б) – полудрагоценные камни, содержащие алюминий

Рис. 96. Природный гранат (а) и обработанный александрит (б) – полудрагоценные камни, содержащие алюминий
1   2   3   4   5

Похожие рефераты:

Самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Методические рекомендации по срс самостоятельная работа
Самостоятельная работа это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Методические рекомендации по срс: Самостоятельная работа
Самостоятельная работа-это индивидуальная познавательная деятельность студента на аудиторных занятиях в внеаудиторное время. Самостоятельная...
Методические рекомендации по срс самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Методические рекомендации по срс самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...
Методические рекомендации по срс самостоятельная работа
Самостоятельная работа – это индивидуальная познавательная деятельность студента на аудиторных занятиях и внеаудиторное время. Самостоятельная...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
referatdb.ru
referatdb.ru
Рефераты ДатаБаза