Учебное пособие для студентов специальностей н. 02. 02 «Радиофизика»


НазваниеУчебное пособие для студентов специальностей н. 02. 02 «Радиофизика»
страница1/18
Дата публикации09.03.2013
Размер1.4 Mb.
ТипУчебное пособие
referatdb.ru > Журналистика > Учебное пособие
  1   2   3   4   5   6   7   8   9   ...   18


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ РАДИОФИЗИКИ И ЭЛЕКТРОНИКИ

Кафедра интеллектуальных систем

ОРГАНИЗАЦИЯ И ОБУЧЕНИЕ


ИСКУССТВЕННЫХ

НЕЙРОННЫХ СЕТЕЙ
УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ

СПЕЦИАЛЬНОСТЕЙ Н.02.02 - «Радиофизика»,

Н.02.03 - «Физическая электроника»

МИНСК 2002

А в т о р ы - с о с т а в и т е л и :

Л. В. Калацкая, канд. тех. наук,

В. А. Новиков, канд. тех. наук,

В. С. Садов, канд. тех. наук
Р е ц е н з е н т ы: кафедра интеллектуальных информационных технологий Белорусского государственного университета информатики и радиоэлектроники, доцент кафедры радиофизики Белорусского государственного университета, канд. тех. наук. Семенчик В. Г.
Утверждено

Ученым Советом факультета радиофизики и электроники, протокол № 14 от 27 июня 2002 года


^

Организация и обучение искусственных нейронных сетей


Учебное пособие для студентов специальностей Н.02.02 -«радиофизика», Н.02.03 - «физическая электроника» / Авт. сост. Л. В. Калацкая, В. А. Новиков, В. С. Садов. – Мн.: БГУ, 2002. – 76с.


Нейронные искусственные сети, успешно применяемые для решения задач классификации, прогнозирования и управления, обеспечивают предельное распараллеливание алгоритмов, соответствующих нейросетевой технологии обработки данных.

Учебное пособие предназначено для студентов и аспирантов факультета радиофизики и электроники, включает принципы организации и алгоритмы обучения систем с массовым параллелизмом, обучающихся на примерах и обобщающих предшествующий опыт, а также задания специального лабораторного практикума, связанного с решением задач распознавания образов, аппроксимации функций и прогнозирования с использованием нейроимитаторов.

ВВЕДЕНИЕ


Нейрокомпьютеры как новый класс устройств вычислительной техники являются модельным отображением особенностей, присущих процессам переработки информации в живых организмах, таким как самоорганизация, обучение, адаптация, и позволяют, рассматривая искусственную нейронную сеть как математическую модель параллельных вычислений, представлять и использовать знания при создании систем искусственного интеллекта [1, 2]. Возможности нейронных сетей, недоступные для традиционной математики, позволяют создавать системы для решения задач управления, распознавания образов, диагностики заболеваний, автоматического анализа документов и многих других приложений.

Первые шаги в области искусственных нейронных сетей были сделаны В. Мак-Калахом и В. Питсом, которые показали в 1943 г., что с помощью пороговых нейронных элементов можно реализовать исчисление логических функций для распознавания образов.

В 1949 г. Дональдом Хеббом было предложено правило обучения, ставшее основой для обучения ряда сетей, а в начале шестидесятых годов Ф. Розенблатт исследовал модель нейронной сети, названной им персептроном. Анализ однослойных персептронов, проведенный М. Минским и С. Пайпертом в 1969 г., показал присущие им ограничения, связанные с невозможностью представления «исключающего или» такими сетями, что сыграло негативную роль для дальнейшего развития исследований в области нейронных сетей [5].

В восьмидесятые годы возрождается интерес к искусственным нейронным сетям в связи с разработкой методов обучения многослойных сетей. Джон Хопфилд исследовал устойчивость сетей с обратными связями и в 1982 г. предложил их использовать для решения задач оптимизации. В это же время Тео Кохонен предложил и исследовал самоорганизующиеся сети, а метод обратного распространения ошибки стал мощным средством обучения нейронных сетей.

В настоящее время исследования в области искусственных нейронных сетей ориентированы в основном на создание специализированных систем для решения задач прогнозирования, управления, в том числе, и в робототехнических системах, диагностики в медицине и технике, распознавания образов и др. [2, 3, 4].

Основой реализации искусственных нейронных сетей служат вычислительные архитектуры с высокой степенью параллелизма, состоящие из большого числа процессорных элементов, связанных между собой и отличающихся возможностью адаптации к внешней среде. Примером физической реализации цифровых нейрочипов является одна из последних разработок российских специалистов НТЦ «Модуль» – нейронный модуль NM6403 [9]. Основными вычислительными узлами нейронного модуля являются управляющее ядро и векторный сопроцессор. Векторный сопроцессор обладает уникальной архитектурой, позволяющей работать с операндами произвольной длины в диапазоне 1–64бит. Возможность динамично изменять разрядность операндов в процессе вычислений позволяет повысить производительность процессора в тех случаях, когда обычные процессоры работают с избыточной точностью.

В качестве инструмента для расчета и проектирования нейронных сетей при решении задач лабораторного практикума выбран пакет прикладных программ фирмы MathWorks Neural Network Toolbox (NNT), функционирующий под управлением ядра системы MATLAB[11]. Пакет NNT отличается возможностью демонстрации, создания и использования многослойных персептронов, линейных и радиальных базисных сетей, самоорганизующихся и рекуррентных сетей, а также проектирования систем управления динамическими процессами. Встроенные функции этого пакета в пособии отмечаются в связи с их возможным дальнейшим применением.

Особенностью 6-й версии системы MATLAB является включение в ее состав различных инструментальных средств организации диалога с пользователем, в частности, для NNT – это графический интерфейс NNTool, обеспечивающий работу только с простейшими однослойными и двухслойными нейронными сетями. Он позволяет, не обращаясь к командному окну системы MATLAB, создавать, обучать, моделировать, импортировать и экспортировать нейронные сети. Этот инструмент эффективен лишь на начальной стадии работы с пакетом, поскольку накладывает определенные ограничения на создаваемые модели. Прикладные же задачи отличаются многомерными векторами входов, необходимостью использования многослойных сетей, поэтому практикум пособия ориентирован на создание и использование нейронных сетей без встроенного в пакет NNT графического интерфейса NNTool.
  1   2   3   4   5   6   7   8   9   ...   18

Похожие рефераты:

Учебное пособие для магистрантов и студентов гуманитарных специальностей Павлодар
Учебное пособие предназначено для студентов и магистрантов, обучающихся по специальности «Культурология». Написанное на конкретном...
Учебное пособие для студентов неязыковых специальностей 1 часть
С 23 Английский язык: лексика, грамматика, речь, общение. Я и мое окружение. 1 часть : учебное пособие для студентов неязыковых специальностей...
Учебное пособие для студентов факультета физики, математики и информационных технологий Павлодар
Учебное пособие предназначено для студентов физико-математических специальностей вузов
Учебное пособие для студентов юридических специальностей Павлодар
Правовые основы охраны недр в Республике Казахстан: учебное пособие для студентов юридических специальностей. – Павлодар
Учебное пособие для студентов педагогических и гуманитарных специальностей Павлодар, 2004
И85 Просветители Павлодарского Прииртышья конца ХIХ начала ХХ в в. / Учебное пособие для студентов педагогических и гуманитарных...
Учебное пособие для студентов педагогических и гуманитарных специальностей Павлодар, 2004
И85 Просветители Павлодарского Прииртышья конца ХIХ начала ХХ в в. / Учебное пособие для студентов педагогических и гуманитарных...
Профессинально ориентированный язык (английский язык)
Учебное пособие предназначено для студентов специальностей 5B070200 «Автоматизация и управление», 5B071900 «Радиотехника, электроника...
Учебное пособие по подготовке к пгк часть 2
Учебное пособие предназначено для использования в учебном курсе “Информатика” по ряду специальностей и направлений подготовки студентов...
Кафедра иностранных языков Немецкий язык для юристов. Учебное пособие по немецкому языку
Учебное пособие предназначено для студентов юридических специальностей в качестве составной части учебно-методического комплекса...
Учебное пособие для студентов географического факультета специальностей
Общая топонимика: Учебное пособие для студентов географического факультета. Мн.: Бгу, 2006. 200 с

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
referatdb.ru
referatdb.ru
Рефераты ДатаБаза