01. 01. 01 – математический анализ *


Скачать 117.56 Kb.
Название01. 01. 01 – математический анализ *
Дата публикации26.03.2013
Размер117.56 Kb.
ТипДокументы
referatdb.ru > Математика > Документы
01.01.01 – математический анализ *


* Приказ Высшей аттестационной комиссии Республики Беларусь от 23 августа 2007 г. № 138

Цели и задачи программы-минимум.

В основу программы-минимум по специальности «01.01.01-математический анализ» положены курсы дифференциального и интегрального исчисления, теории функций действительной переменной, теории функций комплексной переменной и функционального анализа.

Перечисленные курсы в большем или меньшем объеме читаются на механико-математических и математических факультетах белорусских университетов. По сравнению с типовыми программами по этим курсам предлагаемая программа-минимум для аспирантского экзамена является более насыщенной и трудоемкой в смысле усвоения.

Изучение материалов, изложенных в программе-минимум, имеет своей целью глубокое ознакомление с фундаментальными достижениями по перечисленным разделам математического анализа, лежащими в основе современных исследований в этой области.

^ Требования к уровню знаний аспиранта

Основные требования к аспиранту, сдающему кандидатский экзамен по специальности 01.01.01-математический анализ, состоят в следующем.

Он должен свободно владеть основными методами дифференциального и интегрального исчисления, теории функций и функционального анализа; знать основные определения и факты, а также идеи доказательства центральных теорем. Наряду со знанием основных понятий и теорем экзаменующийся по программе-минимум должен продемонстрировать умение подробно проводить доказательства, решать упражнения и приводить необходимые примеры и контрпримеры.

Предполагается наличие математического университетского образования и высокого уровня знаний других базовых и смежных курсов алгебры, геометрии и топологии, теории обыкновенных дифференциальных уравнений и уравнений с частными производными.

^ Содержание программы

I. Дифференциальное и интегральное исчисление.

Основные понятия теории множеств. Множества и операции над ними. Декартово произведение множеств. Частично, линейно и вполне упорядоченные множества.

Бинарные отношения. Понятие отображения (функции) и сопутствующих понятий: график, область определения и область значений, образы и прообразы, полный прообраз множества. Композиция отображений, сужение функции. Сюръекция, инъекция, биекция, обратное отображение.

Понятие о мощности множества. Отношение эквивалентности, классы смежности, фактор-пространство.

^ Действительные числа. Аксиоматика множества действительных чисел и его модели. Мощность подмножеств числовой прямой. Теорема Кантора о несчетности континуума. Множества, ограниченные сверху и снизу. Точные верхняя и нижняя границы множества. Теорема Дедекинда.

^ Предел последовательности. Общие свойства предела, критерий Коши. Сходимость монотонных последовательностей, число Эйлера. Верхний и нижний пределы.

^ Числовые ряды. Сходящиеся и расходящиеся ряды, сумма ряда. Необходимое условие сходимости ряда. Абсолютная и условная сходимость. Критерий Коши. Критерий сходимости положительных рядов, признаки сравнения. Интегральный признак Коши. Условная сходимость, признаки Абеля и Дирихле. Cумма перестановки абсолютно сходящегося ряда. Теорема Римана о перестановках. Теорема Коши о произведении рядов.

^ Различные формы полноты множества действительных чисел. Лемма Кантора. Лемма Бореля-Лебега о покрытиях отрезка интервалами. Предельная точка множества, лемма Больцано-Вейерштрасса.

^ Предел и непрерывность функции. Общие свойства предела функции. Односторонние пределы монотонной функции.

Непрерывность функции в точке. Локальные свойства непрерывных функций. Операции над непрерывными функциями. Классификация разрывов функции.

^ Глобальные свойства непрерывных функций на отрезке. Теоремы Вейерштрасса, теоремы Больцано-Коши. Равномерная непрерывность, теорема Кантора. Критерий глобальной непрерывности монотонной функции и критерий взаимной однозначности непрерывной функции на отрезке.

^ Дифференцируемые функции. Производная и диффернциал. Производные элементарных функций. Правила дифференцирования. Основные теоремы о дифференцируемых функциях (Ферма, Ролля, Лагранжа и Коши). Правила Лопиталя.

Формула Тейлора, различные формы остатка (Пеано, Лагранжа, Коши). Сходимость разложений Тейлора элементарных функций.

Монотонность в терминах производной. Выпуклые функции и условия выпуклости в терминах производных. Условия экстремума. Классические неравенства (Йенсена, Гельдера, Минковского).

^ Интегральное исчисление. Первообразная и неопределенный интеграл. Основные методы отыскания первообразных.

Определение интеграла Римана. Критерий интегрируемости. Классы интегрируемых функций. Свойства определенного интеграла. Формула Ньютона-Лейбница, интегрирование по частям и замена переменной. Формула Тейлора с остатком в виде интеграла.

^ Несобственные интегралы. Виды особенностей. Критерий Коши сходимости несобственного интеграла. Абсолютная и условная сходимость. Признаки сходимости (сравнения и Абеля-Дирихле). Главное значение по Коши.

^ Дифференцируемые функции многих переменных. Производная, частные производные функции и их связь между ними. Достаточное условие дифференцируемости. Производная по направлению, градиент. Частные производные высших порядков, теорема Шварца. Формула Тейлора с остатками Пеано и Лагранжа, интегральная форма остатка. Условия экстремума.

Дифференцируемые векторные функции. Матрица Якоби. Производная композиции. Теоремы об обратной и о неявной функции.

^ Функциональные ряды и последовательности. Равномерная сходимость, критерий Коши. Перестановка предельных переходов. Признаки Вейерштрасса, Абеля и Дирихле для равномерной сходимости. Функциональные свойства суммы ряда. Степенные ряды, радиус сходимости, формула Коши-Адамара. Теорема Абеля.

Пространство непрерывных функций: векторная структура, норма, полнота. Теорема Вейерштрасса о плотности алгебраических полиномов в пространстве непрерывных функций.

Мера Жордана в . Внутренняя и внешняя меры Жордана ограниченного множества, измеримые множества, мера Жордана. Критерии измеримости. Свойства меры Жордана (монотонность, аддитивность, субаддитивность). Мера открытых и замкнутых множеств.

Интеграл Римана в . Определение интеграла Римана на множестве, измеримом по Жордану. Критерии интегрируемости. Классы интегрируемых функций. Критерий Лебега интегрируемости по Риману. Свойства интеграла Римана. Мера декартова произведения измеримых множеств. Теорема Фубини и ее следствия: Замена переменной в интеграле Римана.

^ Функции ограниченной вариации и интеграл Стилтьеса. Функции ограниченной вариации и их свойства, аддитивность и непрерывность вариации. Теорема Жордана.

Определение интеграла Стилтьеса и его свойства. Существование интеграла Стилтьеса, оценка интеграла. Формулы для вычисления с помощью интегралов Римана

^ Криволинейные интегралы. Жордановы кривые и их параметризации. Описание класса параметризаций. Спрямляемость и длина кривой. Критерий Жордана спрямляемости. Гладкая кривая и формулы для вычисления ее длины. Натуральная параметризация и ее существование.

Криволинейный интеграл 1-го рода вдоль спрямляемой жордановой кривой, формулы для вычисления. Ориентация жордановой кривой. Криволинейный интеграл 2-го рода вдоль ориентированной спрямляемой жордановой кривой.

^ Формула Грина. Необходимое условие существования первообразной. Теорема об эквивалентности существования первообразной и независимости криволинейного интеграла от пути. Нахождение первообразной с помощью криволинейного интеграла.

Ориентация плоского контура. Формула Грина. Условия независимости криволинейного интеграла от пути. Вычисление площадей с помощью криволинейного интеграла.

^ Поверхностные интегралы. Площадь гладкой поверхности. Ориентация поверхности. Поверхностные интегралы 1-го и 2-го рода. Формулы Стокса и Гаусса-Остроградского. Скалярные и векторные поля, основные дифференциальные операторы векторного анализа.

^ Интегралы от параметра. Непрерывность и дифференцируемость интегралов, зависящих от параметра. Гамма- и бета-функции Эйлера, их функциональные свойства и некоторые соотношения для них. Асимптотическая формула Стирлинга.

^ II. Теория функций действительного переменного.

Мера Лебега. Мера, лебегово продолжение меры. Свойства меры Лебега (монотонность, конечная аддитивность, субаддитивность). Счетная аддитивность и непрерывность меры Лебега, измеримость счетных объединений и пересечений. Мера Лебега в евклидовых пространствах. Меры Лебега-Стилтьеса на прямой.

^ Измеримые функции. Измеримые функции и их свойства, измеримость предела последовательности измеримых функций. Сходимость по мере и почти всюду. Теоремы Егорова и Лузина.

^ Интеграл Лебега. Интеграл Лебега и его свойства. Счетная аддитивность и абсолютная непрерывность интеграла. Предельный переход под знаком интеграла Лебега, теоремы Лебега, Фату, Леви. Сравнение с интегралом Римана. Прямые произведения мер. Теорема Фубини. Меры, порожденные суммируемыми функциями.

^ Неопределенный интеграл Лебега. Теорема Лебега о производной монотонной функции. Абсолютно непрерывные функции. Производная неопределенного интеграла Лебега. Восстановление функции по ее производной. Формула Ньютона-Лейбница для суммируемых функций.

Интеграл Лебега как функция множества. Теорема Радона-Никодима. Интеграл Лебега-Стилтьеса.

^ Анализ Фурье. Пространства . Ортогональные системы функций и ряды Фурье. Действительная и комплексная тригонометрические системы. Интегральное представление для частных сумм. Лемма Римана-Лебега, принцип локализации. Условия сходимости ряда Фурье в точке и равномерной сходимости.

Теорема Фейера. Полнота и замкнутость тригонометрической системы.

Преобразование Фурье и его свойства. Теорема Римана-Лебега. Взаимодействие операций анализа и преобразования Фурье. Свертка и ее преобразование Фурье. Теорема Планшереля.

^ III. Теория функций комплексного переменного.

Дифференцируемость. Множество комплексных чисел. Производная функции комплексного переменного, дифференцируемость. Уравнения Коши-Римана и условия дифференцируемости. Аналитичность в точке и на множестве, целые функции. Конформные отображения, геометрический смысл аргумента производной. Геометрический смысл модуля производной. Элементарные аналитические функции.

^ Интегральные представления аналитических функций. Интегральная теорема Коши. Интегральная Формула Коши. Теорема о среднем. Принцип максимума модуля. Лемма Шварца. Интеграл типа Коши. Формулы Сохоцкого.

^ Степенные ряды в комплексной плоскости. Лемма Абеля. Радиус и круг сходимости. Формула Коши-Адамара. Аналитичность суммы степенного ряда. Разложение элементарных функций в ряды Тейлора. Равномерно сходящиеся ряды аналитических функций, теоремы Вейерштрасса. Разложение аналитических функций в ряды Тейлора и Лорана, неравенство Коши. Нули аналитических функций. Теорема единственности.

^ Гармонические функции. Оператор Лапласа, гармонические функции. Формула Шварца. Формула Пуассона. Сопряженные гармонические функции. Восстановление сопряженной гармонической функции.

^ Особые точки. Изолированные особые точки однозначного характера. Вычеты, теорема Коши о вычетах. Принцип аргумента, теорема Руше.

Целые и мероморфные функции. Рост целой функции, порядок и тип. Теорема Вейерштрасса о целых функциях с заданными нулями; разложение целой функции в бесконечное произведение. Случай целых функций конечного порядка, теорема Адамара. Теорема Миттаг-Леффлера о мероморфных функциях с заданными полюсами и главными частями

^ Конформные отображения. Конформные отображения, осуществляемые элементарными функциями. Принцип сохранения области. Критерий однолистности. Теорема Римана. Теорема о соответствии границ при конформном отображении.

^ Аналитическое продолжение. Аналитическое продолжение и полная аналитическая функция в смысле Вейерштрасса. Понятие римановой поверхности. Продолжение вдоль кривой. Теорема о монодромии. Принцип симметрии. Отображение многоугольников, формула Кристоффеля-Шварца

^ IV. Функциональный анализ.

Топологические пространства. Основные понятия общей топологии (топология, внутренние и предельные точки множества, открытые и замкнутые множества, замыкание и граница). Предел и непрерывность функции на топологическом пространстве.

Компактные и связные множества и их непрерывные образы. Глобальный критерий непрерывности.

Линейные топологические пространства, счетно-нормированные пространства.

^ Метрические пространства. Метрическое пространство и его топология. Ограниченные множества. Полнота, теорема Кантора о вложенных замкнутых шарах. Пополнение метрических пространств. Теорема Кантора о равномерной непрерывности. Принцип сжимающих отображений и его приложения.

Нигде не плотные множества. Категории Бэра (множества 1-й и 2-й категории). Теорема Бэра о категориях. Сепарабельность.

^ Нормированные пространства. Норма, линейное нормированное пространство. Метрика в линейном нормированном пространстве. -мерное евклидово пространство, критерий Гейне-Бореля компактности в нем.

Компактные и предкомпактные множества в метрическом пространстве, необходимые условия. -сети и вполне ограниченные множества. Критерий компактности Хаусдорфа. Свойство Больцано-Вейерштрасса (счетная компактность) и его связь с предкомпактностью.

^ Конечномерность и компактность. Конечномерные линейные нормированные пространства. Эквивалентность норм. Замкнутость конечномерных подпространств. Теорема Бореля о существовании элемента наилучшего приближения в конечномерном пространстве. Лемма Ф.Рисса о "почти перпендикуляре", теорема Ф.Рисса.

^ Пространства со скалярным произведением. Скалярное произведение. Евклидовы и унитарные пространства. Гильбертовы пространства. Критерий элемента наилучшего приближения подпространством. Ортогональное дополнение и его свойства, теорема о проекции.

^ Ортонормированные системы. Ортогонализация Грама-Шмидта. Полные и замкнутые ортонормированные системы. Ряды Фурье. Тождество Бесселя и неравенство Бесселя, экстремальное свойство сумм Фурье. Сходимость рядов Фурье и равенство Парсеваля. Теорема Ф.Рисса-Фишера.

^ Теория линейных операторов. Ограниченные линейные операторы, условия ограниченности. Норма оператора и формулы для ее вычисления. Расширение оператора по непрерывности. Пространство линейных ограниченных операторов.

Теорема Банаха-Штейнгауза. Условия сходимости последовательности операторов.

Обратимые операторы, теоремы об обратных операторах. Открытость множества обратимых операторов.

Теорема Банаха о гомеоморфизме. Принцип открытых отображений. Замкнутые операторы, связь замкнутости и непрерывности. Теорема Банаха о замкнутом графике.

^ Линейные функционалы. Линейные функционалы и гиперплоскости. Выпуклые функционалы и теорема Хана-Банаха в линейных топологических пространствах. Теорема Хана-Банаха в линейных нормированных пространствах (действительный и комплексный случаи) и следствия из нее.

Сопряженное пространство и его свойства. Общий вид функционалов в в гильбертовом пространстве. Рефлексивные пространства.

Сопряженные операторы. Ограниченность и норма сопряженного оператора.

^ Слабые топологии. Слабая сходимость функционалов и порождающая топология. Условия слабой сходимости функционалов. Слабое свойство Больцано-Вейерштрасса.

Слабая сходимость элементов линейного нормированного пространства и порождающая топология. Условия слабой сходимости элементов. Слабая сходимость в гильбертовом пространстве.

^ Компактные операторы. Компактные операторы. Замкнутость класса компактных операторов. Область значений компактного оператора. Компактность сопряженного оператора.

Выпуклость. Функционал Минковского и его свойства. Теорема об отделяющей гиперплоскости. Опорный функционал и опорная гиперплоскость. Теорема о существовании опорной гиперплоскости в точках границы. Крайние точки, крайние подмножества и их свойства. Теорема Крейна-Мильмана.

Спектр. Регулярные значения оператора, резольвента. Спектр. Компактность спектра, открытость множества регулярных значений. Оценка нормы резольвенты. Тождество Гильберта. Непрерывность и аналитичность резольвенты на множестве регулярных значений. Непустота спектра ограниченного оператора.

^ Самосопряженные операторы в гильбертовом пространстве. Самосопряженный оператор, его эрмитова и квадратичная формы. Свойства собственных чисел и векторов самосопряженного оператора. Вычисление нормы и максимального собственного числа самосопряженного оператора с помощью квадратичной формы. Теорема Гильберта-Шмидта.

^ Дифференциальное исчисление в пространствах Банаха. Производная и дифференциал Фреше. Производная по направлению (производная Гато), производная по подпространству. Теоремы об обратной и о неявной функции.

^ Обобщенные функции. Пространство основных функций. Пространство обобщенных функций медленного роста. Регулярные обобщенные функции, меры, функция Дирака. Операции анализа для обобщенных функций (сдвиги, растяжения, умножение, дифференцирование, свертки, преобразование Фурье).

^ СПИСОК ЛИТЕРАТУРЫ

  1. Архипов Г.И., Садовничий В.А., Чубариков В.Н., Лекции по математическому анализу, М.: Высшая школа, 2000.

  2. Антоневич А.Б., Радыно Я.В. Функциональный анализ и интегральные уравнения. Минск: «Издательство БГУ», 2003.

  3. Владимиров В.С. Обобщенные функции в математической физике. М.: «Наука», 1979.

  4. Голузин Г.М. Геометрическая теория функций комплексного переменного. М.: «Наука», 1966.

  5. Зверович Э. И. Вещественный и комплексный анализ. Ч. 1-6. Минск: «Издательство БГУ», 2003.

  6. Зорич В.А., Математический анализ. Т. 1-2, М.: Наука, 1981.

  7. Кириллов А. А., Гвишиани А. Д. Теоремы и задачи функционального анализа. М.: «Наука», 1979.

  8. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: «Наука», 1976.

  9. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: «Наука», 1973.

  10. Маркушевич А.И. Теория аналитических функций . Т. 1-2. М.: «Наука», 1967-1968.

  11. Натансон И.П. Теория функций вещественной переменной. М.: «Наука», 1974.

  12. Никольский С.М. Курс математического анализа. Т. 1-2. М.: «Наука», 1975.

  13. Привалов И.И. Введение в теорию функций комплексного переменного. М.: «Наука», 1977.

  14. Рудин У. Основы математического анализа. М.: «Мир», 1976.

  15. Рудин У. Функциональный анализ. М.: «Мир», 1975.

  16. Титчмарш Е. Теория функций. М.: «Наука», 198

Похожие рефераты:

Учебно-методический комплекс по дисциплине «Математический анализ....
Рабочая программа дисциплины «Математический анализ. Анализ функции одной переменной» для преподавателя
Литература Зорич В. А. Математический анализ. М., Наука, Т. 1 1981
...
Литература Зорич В. А. Математический анализ. М., Наука, Т. 1 1981
Создание базы для освоения основных понятий и методов современной математики. Освоение курса «Математический анализ» позволит студентам...
Литература Зорич В. А. Математический анализ. М., Наука, Т. 1 1981
Создание базы для освоения основных понятий и методов современной математики. Освоение курса «Математический анализ» позволит студентам...
Учебно-методический комплекс по дисциплине «Математический анализ....
Рабочая программа дисциплины «Математический анализ. Анализ функции многих переменных» для студентов
Программа обучения по дисциплине (Syllabus) дисциплина Математический...
Ознакомление с фундаментальными методами исследования числовых и функциональных рядов. Исследование несобственных интегралов первого...
Математический анализ учебная программа дисциплины обязательного компонента для специальности
Учебная программа дисциплины обязательного компонента составлена на основе типовой учебной программы «Математический анализ» для...
Исследование операций» по теме: «Нахождение оптимальных планов производства...
«Нахождение оптимальных планов производства продукции и их экономико-математический анализ»
Программа вступительного экзамена по приему в магистратуру по специальности...
Программа вступительного экзамена составлена на основании типовых программ дисциплин «Математический анализ», «Уравнения математической...
Программа (пдс) обучения по дисциплине Действительный анализ
Она дополняет и обобщает классический математический анализ. Ее содержание составляет вопросы, зародившиеся в недрах классического...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
referatdb.ru
referatdb.ru
Рефераты ДатаБаза