Скачать 1.56 Mb.
|
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ «Базы данных и экспертные системы» для специальности 5В073200-Стандартизация, метрология и сертификация ^ Семей 2013 СОДЕРЖАНИЕ 1 Глоссарий...............................................................................................................................3 Лекции........................................................................................................................................4 2 Лабораторные занятия........................................................................................................92 3 Самостоятельная работа студента......................................................................................94 1 ГЛОССАРИЙ
2 ЛЕКЦИИ Лекция 1. Тема. Введение в интеллектуальные информационные технологии В лекции изложены основные направления создания и развития интеллектуальных информационных технологий, которые дают возможность пользователю получить сведения по интересующей проблеме, используя накопленный опыт и знания профессионалов. В основе стратегии интеллектуальных технологий лежит понятие парадигмы - концептуального представления на суть проблемы или задачи и принцип ее решения. Центральная парадигма интеллектуальных технологий - это обработка знаний. Системы, ядром которых является база знаний или модель предметной области, описанная на языке сверхвысокого уровня, приближенном к естественному языку, называют интеллектуальными. Чаще всего интеллектуальные системы (ИС) применяются для решения сложных задач, связанных с использованием слабо формализованных знаний специалистов - практиков, а также с логической обработкой информации. Например, поддержка принятия решения в сложных ситуациях, анализ визуальной информации, управление в электрических цепях электрооборудования и сетях распределения электроэнергии; поиск неисправностей в электронных устройствах, диагностика отказов контрольно - измерительного оборудования и т. д. Типичными примерами ИС являются экспертные системы (ЭС) и искусственные нейронные сети (ИНС), берущие на себя решение вопросов извлечения и структурирования знаний, а также технологические аспекты разработки систем, основанных на знаниях. Экспертные системы – это быстро прогрессирующее направление в области искусственного интеллекта. Современные ЭС представляют собой сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и распространяющие этот эмпирический опыт для консультирования менее квалифицированных пользователей. Парадигма ЭС предполагает следующие объекты, а также этапы разработки и функционирования ИС:
Основные факторы, влияющие на целесообразность и эффективность разработки ЭС:
Сравнительные свойства прикладных задач для их решения ЭС приведены в таблице 1. Таблица 1. Критерии применимости ЭС
Недостатки экспертных систем перед человеком-экспертом:
Достоинства экспертных систем перед человеком- экспертом:
Главное отличие ЭС от других программных средств - это наличие базы знаний, в которой знания хранятся в форме, понятной специалистам предметной области, и могут быть изменены и дополнены также в понятной форме. Это и есть языки представления знаний (ЯПЗ). В России в исследования и разработку ЭС большой вклад внесли работы Д. А. Поспелова (основателя Российской ассоциации искусственного интеллекта и его первого президента), Э. В. Попова, В. Ф. Хорошевского, В. Л. Стефанюка, Г. С. Осипова, В. К. Финна, В. Л. Вагина, В. И. Городецкого и многих других. Современное состояние разработок в области ЭС в России можно охарактеризовать как стадию все возрастающего интереса среди широких слоев специалистов - менеджеров, инженеров, программистов и других. Наибольшие трудности в разработке ЭС вызывает не процесс машинной реализации систем, а этап анализа знаний и проектирования базы знаний. Этим занимается специальная наука - инженерия знаний. Экспертные системы имеют две категории пользователей и два отдельных входа, соответствующих различным целям взаимодействия пользователей с ЭС. К первой категории относятся обычные пользователи, которым требуется консультация ЭС. Вторую категорию представляют эксперты в предметной области и инженеры знаний. В их функции входит заполнение базы знаний с помощью специализированной диалоговой компоненты ЭС - подсистемы приобретения знаний. Подсистема приобретения знаний предназначена для добавления в базу знаний новых правил и модификации имеющихся. В ее задачу входит приведение правила к виду, позволяющему подсистеме вывода применять это правило в процессе работы. В более сложных системах предусмотрены еще и средства для проверки вводимых или модифицируемых правил на непротиворечивость с имеющимися правилами. Диалог с ЭС осуществляется через диалоговый процессор - специальную компоненту ЭС. Существуют две основные формы диалога с ЭС - это диалог на ограниченном подмножестве естественного языка с использованием словаря (меню) и диалог на основе из нескольких возможных действий. База знаний представляет наиболее важную компоненту экспертной системы. В отличие от всех остальных компонент ЭС, база знаний – есть «переменная» часть системы, которая может пополняться и модифицироваться инженерами знаний и опыта использования ЭС между консультациями, а в некоторых системах и в процессе консультации. Существует несколько способов представления знаний в ЭС. Общим для всех способов является то, что знания представлены в символьной форме (тексты, списки и другие символьные структуры). Тем самым, в ЭС реализуется принцип символьной природы рассуждений, который заключается в том, что процесс рассуждения представляется как последовательность символьных преобразований. Подсистема вывода - программная компонента экспертных систем, реализующая процесс ее рассуждений на основе базы знаний и рабочего множества. Она выполняет две функции: во-первых, просмотр существующих фактов из рабочего множества и правил из базы знаний и добавление (по мере возможности) в рабочее множество новых фактов и, во-вторых, определение порядка просмотра и применения правил. Эта подсистема управляет процессом консультации, сохраняет для пользователя информацию о полученных заключениях, и запрашивает у него информацию, когда для срабатывания очередного правила в рабочем множестве оказывается недостаточно данных. Цель ЭС - вывести некоторый заданный факт, который называется целевым утверждением. В результате применения правил добиться того, чтобы этот факт был включен в рабочее множество, либо опровергнуть этот факт, то есть убедиться, что его вывести невозможно. Целевое утверждение может быть либо «заложено» заранее в базу знаний системы, либо извлекается системой из диалога с пользователем. Работа системы представляет собой последовательность шагов, на каждом из которых из базы выбирается некоторое правило, которое применяется к текущему содержимому рабочего множества. Цикл заканчивается, когда выведено либо опровергнуто целевое утверждение. Цикл работы экспертной системы иначе называется логическим выводом. Другим актуальным направлением разработки ИС является создание интеллектуальных нейронных сетей (ИНС). Характер разработок в области ИНС принципиально отличается от ЭС. В основе нейронных сетей лежит преиму-щественно поведенческий подход к решаемой задаче: сеть «учится на примерах» и подстраивает свои параметры при помощи так называемых алгоритмов обучения через механизм обратной связи. Парадигма ученика включает следующие положения и последовательность действий:
В рамках этой парадигмы самообучающиеся системы являются менее изученными, чем экспертные системы. Искусственные нейронные сети индуци-рованы биологией, так как они состоят из элементов, функциональные возможности которых аналогичны большинству элементарных функций биологического нейрона. Нейрон реализует достаточно простую передаточную функцию, позволяющую преобразовать возбуждения на входах, с учетом весов входов, в значение возбуждения на выходе нейрона. Функционально законченный фрагмент мозга имеет входной слой нейронов – рецепторов, возбуждаемых извне, и выходной слой, нейроны которого возбуждаются в зависимости от конфигурации и возбуждения нейронов входного слоя. Распределение величин возбуждения нейронов выходного слоя, чаще всего поиск нейрона, обладающего максимальной величиной возбуждения, позволяет установить соответствие между комбинацией и величинами возбуждений на входном слое. Эта зависимость определяет возможность логического вывода вида «если - то». Управление и формирование данной зависимости осуществляется весами синаптических связей нейронов, которые влияют на направление распространения возбуждения нейронов в сети, приводящие на этапе обучения к «нужным» нейронам выходного слоя. Отсюда следует, что сеть работает в двух режимах: в режиме обучения и в режиме распознавания (рабочем режиме). В режиме обучения производится формирование логических цепочек. В режиме распознавания нейронная сеть по предъявленному образу с высокой достоверностью определяет, к какому типу он относится, какие действия следует предпринять и т.д. Следовательно, под ИНС следует понимать системы, параметры, которых могут изменяться в процессе обучения или самообучения, исходя из накопленного опыта обобщающего предыдущие прецеденты на новые случаи и извлекающего существенные свойства из поступающей информации. Нейронные сети применяются для решения трудно формализуемых задач, в которых информация об объекте является неполной, неточной или нечеткой. Кроме того, связь между входными и выходными параметрами может быть настолько сложна, что моделирование в традиционном смысле становится малоэффективным, а порой просто невозможным. Примеры эффективного применения ИНС являются задачи управления, распознавания образов, анализа данных, моделирования и прогно-зирования. Основные сведения из истории создания ИС. 4 октября 1939 г. по решению суда изобретателем первого цифрового электронного компьютера признан Джон Винсент Атанасов и его ассистент Клиффорд Берри (Университет штата Айова). Половинчатое признание первенства Атанасова является следствием скандального судебного решения. По этому решению первые компьютерные инженеры Джон Мочли и Джон Эккерт лишились права на патент, полученный ими в 1964 году, и права называться изобретателями электронно-цифрового компьютера. Однако именно они после нескольких экспериментальных моделей создали в 1945 году в Университете Пенсильвании более известный компьютер ENIAC, с которого началось развитие индустрии. В 1945 г. построены Вальтером Питтсом и Уорреном МакКуллочем нейронные сети с обратной связью. Примерно в то же время Норберт Винер создал область кибернетики, которая включала математическую теорию обратной связи для биологических и инженерных систем. Важным аспектом данного открытия стала концепция о том, что разум - это процесс получения и обработки информации для достижения определенной цели. В 1949 г. Дональд Хеббс открыл способ создания самообучающихся искусственных нейронных сетей. Этот процесс, позволяет изменять весовые коэффициенты в нейронной сети так, что данные на выходе отражают связь с информацией на входе. 1950-е г.г. отмечены в истории как годы рождения искусственного интеллекта. Алан Тьюринг предложил специальный тест в качестве способа распознать разумность машины. В этом тесте один или несколько людей должны задавать вопросы двум тайным собеседникам и на основании ответов определять, кто из них машина, а кто человек. Если не удавалось раскрыть машину, которая маскировалась под человека, предполагалось, что машина разумна. В 1950-е гг. были также разработаны два языка ИИ. Первый, язык IPL, был создан Ньюэллом, Симоном и Шоу для программы Logic Theorist. IPL являлся языком обработки списка данных и привел к созданию более известного языка LISP. LISP появился в конце 1950-х и вскоре заменил IPL, став основным языком приложений ИИ. Язык LISP был разработан в лабораториях Массачусетского технологического института (MIT). Его автором был Джон МакКарти, один из первых разработчиков ИИ. В 1960-е г.г. наиболее важным было представление знаний. Были построены игрушечные миры. С помощью этих миров создавалась окружающая среда, в которой тестировались идеи по компьютерному зрению, роботехнике и обработке человеческого языка В начале 1970-х гг впервые была применена на практике Лотфи Заде нечеткая логика для управления процессами. В 1970-х продолжалось создание языков для ИИ. Был разработан язык ПРОЛ0Г. Язык ПРОЛОГ предназначался для разработки программ, которые управляли символами и работал с правилами и фактами. В то время как ПРОЛОГ распространился за пределами США, язык LISP сохранял свой статус основного языка для приложений ИИ. 1980-е г.г. отмечены ростом числа разработок и продаж экспертных систем на языке LISP, которые становились лучше и дешевле. Экспертные системы использовались многими компаниями для разработки полезных ископаемых, прогнозирования и инвестиций. Также были идентифицированы ограничения в работе экспертных систем, поскольку их знания становились все больше и сложнее. Нейронные сети в эти годы также нашли применение при решении ряда различных задач, таких как распознавание речи и возможность самообучения машин. 1990-е гг. стали новой эпохой в развитии приложений ИИ. Элементы ИИ были интегрированы в ряд приложений, такие как системы распознавания фальшивых кредитных карт; системы распознавания лиц; системы автоматического планирования; системы предсказания прибыли и потребности в персонале; конфигурируемые системы «добычи данных» из баз данных; системы персонализации и другие. Вопросы для самопроверки.
Лекция 2. Основные направления, функции и классификация ИИС. В лекции изложены основные направления исследований в области ИИ, а также признаки классификации ИИС в зависимости от конкретных информационных потребностей пользователей, а также характеристика систем с интеллектуальным интерфейсом, экспертных систем, самообучающихся систем и адаптивных информационных систем. Области применения ИИС. Интеллектуальные информационные системы проникают во все сферы жизни, поэтому трудно провести строгую классификацию направлений, по которым ведутся активные и многочисленные исследования в области ИИ. Рассмотрим некоторые из них.
|
Программа дисциплины «Базы данных и экспертные системы» для преподавателя... «Базы данных и экспертные системы» для специальности 5В073200-Стандартизация, метрология и сертификация | Методические рекомендации по изучению дисциплины Формат и политика курса «Базы данных и экспертные системы» для специальности 5В073200-Стандартизация, метрология и сертификация |
Учебно-методический комплекс дисциплины «Базы данных в системах управления» Учебно-методические материалыпо дисциплине “Базы данных в системах управления ” | Рабочая программа дисциплины “ Базы данных в системах управления... Рабочая программа дисциплины “Базы данных в системах управления” для преподавателя |
Программа дисциплины “Информационно-управляющие системы ” для преподавателя... Одобрено и рекомендовано к изданию на заседании Учебно-методического совета университета | Программа дисциплины “Клиент-серверные приложения с использованием... Одобрено и рекомендовано к изданию на заседании Учебно-методического совета университета |
Программа дисциплины «Операционные системы» для преподавателя Редакция... «Операционные системы» для специальности 5B070400-Вычислительная техника и программное обеспечение | Учебно-методическое пособие “Методы сортировок и поиска” Редакция... В этой части книги будут обсуждаться структуры данных в основной памяти и методы их использования, предназначенные для поиска данных... |
Учебно-методический комплекс дисциплины «обж» учебно-методические... Авария разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв... | Программа дисциплины «История государства и права» учебно-методические... Автономия (греч самоуправление) – широкое внутреннее управление в определенном регионе государства |